Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

示例 2 训练


训练函数

async function trainModel(model, inputs, labels, surface) {
  const batchSize = 25;
  const epochs = 100;
  const callbacks = tfvis.show.fitCallbacks(surface, ['loss'], {callbacks:['onEpochEnd']})
  return await model.fit(inputs, labels,
    {batchSize, epochs, shuffle:true, callbacks:callbacks}
  );
}

自己尝试一下 »

epochs 定义模型将执行多少次迭代(循环)。

model.fit 是运行循环的函数。

callbacks 定义回调函数,在模型想要重新绘制图形时调用。


测试模型

训练模型后,对其进行测试和评估非常重要。

我们通过检查模型对一系列不同输入的预测结果来做到这一点。

但是,在执行此操作之前,我们必须对数据进行反归一化。

反归一化

let unX = tf.linspace(0, 1, 100);
let unY = model.predict(unX.reshape([100, 1]));

const unNormunX = unX.mul(inputMax.sub(inputMin)).add(inputMin);
const unNormunY = unY.mul(labelMax.sub(labelMin)).add(labelMin);

unX = unNormunX.dataSync();
unY = unNormunY.dataSync();

然后我们可以查看结果

绘制结果

const predicted = Array.from(unX).map((val, i) => {
return {x: val, y: unY[i]}
});

// 绘制结果
tfPlot([values, predicted], surface1)

自己尝试一下 »


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.