菜单
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

示例 2 训练


训练函数

async function trainModel(model, inputs, labels, surface) {
  const batchSize = 25;
  const epochs = 100;
  const callbacks = tfvis.show.fitCallbacks(surface, ['loss'], {callbacks:['onEpochEnd']})
  return await model.fit(inputs, labels,
    {batchSize, epochs, shuffle:true, callbacks:callbacks}
  );
}

自己动手试一试 »

epochs 定义了模型将执行的迭代次数(循环)。

model.fit 是运行循环的函数。

callbacks 定义了当模型想要重绘图形时调用的回调函数。


测试模型

模型训练后,对其进行测试和评估很重要。

我们通过检查模型对一系列不同输入的预测来做到这一点。

但是,在此之前,我们必须对数据进行反归一化。

反归一化

let unX = tf.linspace(0, 1, 100);
let unY = model.predict(unX.reshape([100, 1]));

const unNormunX = unX.mul(inputMax.sub(inputMin)).add(inputMin);
const unNormunY = unY.mul(labelMax.sub(labelMin)).add(labelMin);

unX = unNormunX.dataSync();
unY = unNormunY.dataSync();

然后,我们可以查看结果。

绘制结果

const predicted = Array.from(unX).map((val, i) => {
return {x: val, y: unY[i]}
});

// 绘制结果
tfPlot([values, predicted], surface1)

自己动手试一试 »


×

联系销售

如果您想将 W3Schools 服务用于教育机构、团队或企业,请发送电子邮件给我们
sales@w3schools.com

报告错误

如果您想报告错误,或想提出建议,请发送电子邮件给我们
help@w3schools.com

W3Schools 经过优化,旨在方便学习和培训。示例可能经过简化,以提高阅读和学习体验。教程、参考资料和示例会不断审查,以避免错误,但我们无法保证所有内容的完全正确性。使用 W3Schools 即表示您已阅读并接受我们的使用条款Cookie 和隐私政策

版权所有 1999-2024 Refsnes Data。保留所有权利。W3Schools 由 W3.CSS 提供支持