Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

泊松分布


泊松分布

泊松分布是一种离散分布

它估计在指定时间内事件发生的次数。例如,如果某人每天吃两次饭,那么他吃三次饭的概率是多少?

它有两个参数

lam - 速率或已知的发生次数,例如上述问题的 2。

size - 返回数组的形状。

示例

为发生次数 2 生成一个随机的 1x10 分布

from numpy import random

x = random.poisson(lam=2, size=10)

print(x)
自己尝试 »

泊松分布的可视化

示例

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

sns.distplot(random.poisson(lam=2, size=1000), kde=False)

plt.show()

结果

自己尝试 »


正态分布和泊松分布的区别

正态分布是连续的,而泊松分布是离散的。

但我们可以看到,类似于二项分布,对于足够大的泊松分布,它将变得类似于具有特定标准差和均值的正态分布。

示例

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

sns.distplot(random.normal(loc=50, scale=7, size=1000), hist=False, label='normal')
sns.distplot(random.poisson(lam=50, size=1000), hist=False, label='poisson')

plt.show()

结果

自己尝试 »

二项分布和泊松分布的区别

二项分布只有两种可能的结果,而泊松分布可以有无限多种可能的结果。

但是对于非常大的n和接近零的p,二项分布与泊松分布几乎相同,使得n * p几乎等于lam

示例

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

sns.distplot(random.binomial(n=1000, p=0.01, size=1000), hist=False, label='binomial')
sns.distplot(random.poisson(lam=10, size=1000), hist=False, label='poisson')

plt.show()

结果

自己尝试 »


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.