Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

数据科学 - 统计学入门


统计学导论

统计学是分析数据的科学。

当我们创建了一个预测模型后,必须评估预测的可靠性。

毕竟,如果我们不能依靠它,预测有什么价值呢?


描述性统计

我们首先介绍一些基本的描述性统计。

描述性统计总结了数据集的一些重要特征,例如

  • 计数
  • 总和
  • 标准差
  • 百分位数
  • 平均值
  • 等等。

它是熟悉数据的一个良好起点。

我们可以在 Python 中使用 describe() 函数来总结数据

示例

print (full_health_data.describe())
自己尝试一下 »

输出

Stat Describe

你在这里看到什么有趣的东西了吗?


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.