Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

Pandas DataFrame skew() 方法

❮ DataFrame 参考


示例

返回每列的偏度

import pandas as pd

data = [[10, 18, 11], [13, 15, 8], [9, 20, 3]]

df = pd.DataFrame(data)

print(df.skew())
自己尝试 »

定义和用法

skew() 方法计算每列的偏度。

通过指定列轴 (axis='columns'),skew() 方法会按列搜索并返回每的偏度。


语法

dataframe.skew(axis, skipna, level, numeric_only, kwargs)

参数

axisskipnalevelnumeric_only 参数是 关键字参数

参数 描述
axis 0
1
'index'
'columns'
可选,检查哪个轴,默认为 0。
skip_na True
False
可选,默认为 True。如果结果不应跳过 NULL 值,则设置为 False
level 数字
级别名称
可选,默认为 None。指定要沿其检查的级别(在分层多索引中)
numeric_only None
True
False
可选。指定是否仅检查数值。默认为 None
kwargs   可选,关键字参数。这些参数没有效果,但可以被 NumPy 函数接受

返回值

包含偏度值的 Series

如果指定了 level 参数,则此方法将返回 DataFrame 对象。

此函数不会更改原始 DataFrame 对象。


❮ DataFrame 参考

×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.