Pandas - 数据清洗
数据清洗
数据清洗是指修复数据集中的不良数据。
不良数据可能包括
- 空单元格
- 错误格式的数据
- 错误数据
- 重复项
在本教程中,您将学习如何处理所有这些问题。
我们的数据集
在接下来的章节中,我们将使用此数据集
Duration Date Pulse Maxpulse Calories 0 60 '2020/12/01' 110 130 409.1 1 60 '2020/12/02' 117 145 479.0 2 60 '2020/12/03' 103 135 340.0 3 45 '2020/12/04' 109 175 282.4 4 45 '2020/12/05' 117 148 406.0 5 60 '2020/12/06' 102 127 300.0 6 60 '2020/12/07' 110 136 374.0 7 450 '2020/12/08' 104 134 253.3 8 30 '2020/12/09' 109 133 195.1 9 60 '2020/12/10' 98 124 269.0 10 60 '2020/12/11' 103 147 329.3 11 60 '2020/12/12' 100 120 250.7 12 60 '2020/12/12' 100 120 250.7 13 60 '2020/12/13' 106 128 345.3 14 60 '2020/12/14' 104 132 379.3 15 60 '2020/12/15' 98 123 275.0 16 60 '2020/12/16' 98 120 215.2 17 60 '2020/12/17' 100 120 300.0 18 45 '2020/12/18' 90 112 NaN 19 60 '2020/12/19' 103 123 323.0 20 45 '2020/12/20' 97 125 243.0 21 60 '2020/12/21' 108 131 364.2 22 45 NaN 100 119 282.0 23 60 '2020/12/23' 130 101 300.0 24 45 '2020/12/24' 105 132 246.0 25 60 '2020/12/25' 102 126 334.5 26 60 2020/12/26 100 120 250.0 27 60 '2020/12/27' 92 118 241.0 28 60 '2020/12/28' 103 132 NaN 29 60 '2020/12/29' 100 132 280.0 30 60 '2020/12/30' 102 129 380.3 31 60 '2020/12/31' 92 115 243.0
此数据集中包含一些空单元格(第 22 行的“日期”以及第 18 行和第 28 行的“卡路里”)。
此数据集中包含错误格式的数据(第 26 行的“日期”)。
此数据集中包含错误数据(第 7 行的“持续时间”)。
此数据集中包含重复项(第 11 行和第 12 行)。